terça-feira, 13 de novembro de 2012

Curiosidade

                                      

O raio laser é um tipo de radiação eletromagnética visível ao olho humano. Laser é uma palavra que é formada a partir das palavras light amplification by stimulated emission of radiation, que juntas significam “amplificação da luz por emissão estimulada por radiação”. O laser possui características especiais como, por exemplo, ela ser monocromática, coerente e colimada, além de ter larga aplicação tecnológica e científica que vem se expandindo cada dia mais. 

A luz do laser além de ser monocromática, ou seja, constituída por radiações de uma única freqüência, é muito potente em razão da grande concentração de energia em pequenas áreas (pequenos feixes). O feixe de laser é muito potente, podendo ter brilho superior ao da luz emitida por uma lâmpada. 

O físico Albert Einstein, no ano de 1916, lançou as bases para a criação do laser a partir das teorias de Max Plank. No entanto essas bases ficaram esquecidas durante a Segunda Guerra Mundial. Foi em 1953, trinta e sete anos depois, que cientistas conseguiram produzir o primeiro laser, ou melhor dizendo, um dispositivo bastante similar a um laser, pois ele não tinha a capacidade de omitir ondas de forma contínua. Apesar de não ter sido o criador do laser, A. Einstein leva o crédito por ter sido o cientista que descobriu o efeito físico existente por detrás do funcionamento do laser, a emissão estimulada, essa que é a condição necessária para se ter o equilíbrio térmico da radiação com a matéria. 

Em razão de suas características, o laser hoje é muito aplicado como, por exemplo, nas cirurgias médicas, em pesquisas científicas, na holografia, nos leitores de CD e DVD como também no laser pointer utilizado para apresentação de slides. Na indústria o laser de dióxido de carbono tem sido muito utilizado, pois possibilita um processo rápido de corte e solda de materiais. As aplicações do raio lazer são inúmeras e tem se tornado cada vez mais diversificado, de forma que relacionar todas elas fica impossível.

Física do Cotidiano


O nascer do Sol é um dos mais belos espetáculos da natureza. Nas grandes cidades, infelizmente, ele passa despercebido, não somente devido à correria do dia a dia, mas também devido ao fato de que os altos prédios e a poluição acabam ocultando-o.
Quem sai cedo de casa eventualmente tem a chance de ver esse fenômeno. Talvez muitos de nós já tenhamos observado a rápida transição que ocorre no amanhecer. Parece que, em um instante, tudo está escuro e, minutos depois, o Sol domina o ambiente.
A grande influência do Sol sobre nós fez com que ele fosse considerado uma divindade em muitas culturas. A sua luz e o seu calor são essenciais para a manutenção da vida na Terra.
A luz e o calor do Sol são essenciais para a manutenção da vida na Terra
Praticamente todas as formas de energia usadas na nossa sociedade são oriundas do Sol. Por exemplo, a energia que extraímos dos alimentos foi quimicamente acumulada durante o processo de fotossíntese, por meio do qual as plantas usam a energia da luz solar para converter gás carbônico, água e minerais em compostos orgânicos e oxigênio gasoso.
Ao ingerir um alimento, nosso organismo quebra as ligações químicas dessas moléculas e obtém energia, que é armazenada em outras moléculas, como a adenosina trifosfato (ATP).
Quando nos dirigimos para o trabalho, seja por meio de automóveis, ônibus ou metrô, também utilizamos, de certa forma, a energia do Sol. Os biocombustíveis, gerados principalmente a partir da cana–de-açúcar (caso do etanol) e de óleos vegetais (caso do biodiesel), são exemplos disso.
Na produção de combustíveis fósseis, derivados do petróleo, também ocorre uma transformação da energia solar. Admite-se que a origem do petróleo esteja relacionada à decomposição dos seres que formam o plâncton e de outras matérias orgânicas – restos de vegetais, algas e animais marinhos –, em um processo que demora centenas de milhões de anos. Quando queimamos esses combustíveis, liberamos a energia química que foi acumulada na matéria orgânica durante esse tempo.
A energia hidrelétrica, que representa grande parte da matriz energética do Brasil, também depende da energia solar. No momento em que a água desce pela represa da usina hidrelétrica, fazendo com que as turbinas girem e produzam eletricidade, há o processo de transformação da energia de movimento (energia cinética) da água em energia elétrica. Para que a represa continue a ter água, é necessário que haja chuvas e estas só acontecem por causa da evaporação da água provocada pelo Sol.
Portanto, uma manhã ensolarada não é apenas prenúncio de um dia bonito. Ela deve servir também para nos lembrar da importância do Sol em nossas vidas

domingo, 11 de novembro de 2012

Classificação Estelar


 Em astronomia, classificação estelar é uma classificação de Estrelas baseadas na temperatura da fotosfera e suas características espectrais associadas, e refinada a seguir em termos de outras características. As temperaturas estelares podem ser classificadas usando-se a lei do deslocamento de Wien; mas isto cria dificuldades para estrelas distantes. A espectroscopia estelar oferece uma maneira de classificar estrelas de acordo com suas linhas de absorção; linhas de absorção particulares podem ser observadas somente para uma dada temperatura porque somente nessa temperatura os níveis de energia atômica envolvidos estão povoados. Um esquema antigo do século XIX) utilizava letras de A ao P, e é a origem das classes espectrais usadas atualmente.
Fisicamente, as classes indicam a temperatura da atmosfera da estrela e são normalmente listadas da mais quente para a mais fria, tal como é feito na seguinte tabela veja: classificação espectral de Harvar
ClasseTemperaturaCor convencionalCor aparenteMassa
(massas solares)
Raio
(raio solar)
LuminosidadeLinhas de hidrogénio % das estrelas da sequência principal
O30,000–60,000 Kazulazul64 M16 R1,400,000 LFraco~0.00003%
B10,000–30,000 Kazul a azul-brancoazul-branco18 M7 R20,000 LMédio0.13%
A7,500–10,000 Kbrancobranco3.1 M2.1 R40 LForte0.6%
F6,000–7,500 Kamarelo-brancobranco1.7 M1.4 R6 LMédio3%
G5,000–6,000 Kamareloamarelo-branco1.1 M1.1 R1.2 LFraco7.6%
K3,500–5,000 Klaranjaamarelo-laranja0.8 M0.9 R0.4 LMuito fraco12.1%
M2,000–3,500 Kvermelholaranja-vermelho0.4 M0.5 R0.04 LMuito fraco76.45%
Um mnemônico em inglês conhecido para guardar esta sequencia de letras é "OBA Fine Girl, Kiss Me". O Diagrama de Hertzsprung-Russell relaciona a classificação das estrelas com a magnitude absoluta, luminosidade, e temperatura da superfície. Deve-se notar que enquanto esta descrição das cores estelares é tradicional, ela realmente descreve as cores das estrelas como vista através de nossa atmosfera. O Sol não é de fato uma estrela amarela, mas tem essencialmente a cor de um Corpo negro a 5780K, isto é, uma cor branca sem nenhum traço de amarelo, e é utilizado algumas vezes como a definição da cor branca.

A razão para o arranjo ímpar das letras é histórica. Quando as pessoas começaram a tirar espectros estelares, elas notaram que as estrelas possuem linhas espectrais para o hidrogênio com diferentes intensidades, e assim elas classificaram as estrelas baseando-se na intensidade das linhas da série de Balmer do hidrogênio, linhas de A (mais intensa) até Q (mais fraca). Outras linhas de átomos neutros ou ionizados então entraram na classificação (Linha H&K do cálcio, Linhas D do sódio, etc). Mais tarde se descobriu que algumas das classes estavam na verdade duplicadas e foram removidas. Foi somente muito mais tarde que se descobriu que a intensidade das linhas espectrais do Hidrogênio estavam relacionadas com a temperatura da superfície estelar. O trabalho básico foi realizado pelas "garotas" do Observatório do Colégio de Harvard, principalmente por Cannon e Antonia Maury, baseadas no trabalho de Williamina Fleming. Estas classes foram posteriormente sub-divididas utilizando-se números arábicos de 0 a 9. A0 significa a estrela mais quente na classe A e A9 a estrela mais fria. O Sol é uma estrela classificada como G2.

Teste de física

http://www2.uol.com.br/aprendiz/n_simulado/testes/testes_flash/teste04/fisica/index.htm

Dá uma olhadinha ;)

Tirinha


sábado, 10 de novembro de 2012

A física quântica e o Nobel


A física quântica e o Nobel
Durante o século 20, muitos físicos foram laureados com o prêmio Nobel por seus trabalhos na área de física quântica. (fotos: Fundação Nobel e Wikimedia Commons)
Todos os anos, no começo do mês de outubro, cria-se no meio científico muita expectativa em relação ao anúncio dos ganhadores do prêmio Nobel. Esse prêmio é considerado uma das mais importantes honrarias para os cientistas – embora também seja concedido para as áreas de literatura e paz, que não estão associadas à investigação científica.
Com relação ao prêmio de física de 2012, até brinquei com os meus alunos que eu não tinha recebido nenhum telefonema da Academia Real Sueca de Ciências – instituição responsável pela escolha – e teria que esperar o próximo ano. Eu sei que é altamente improvável que eu receba esse telefonema, mas sem dúvida todo físico um dia sonhou em ganhar tal honraria.
O primeiro laureado com o prêmio Nobel de Física, em 1901, foi o físico alemão Wilhelm Conrad Röntgen (1845-1923), pela descoberta dos raios X, uma radiação eletromagnética com comprimento de onda da ordem de um décimo de nanômetro (um nanômetro equivale a um bilionésimo de um metro) e que pode ser utilizada para o estudo das estruturas atômicas e a realização de imagens do interior do corpo humano – aplicação bem conhecida.
É mais um prêmio concedido ao desenvolvimento de um dos pilares da física: a física quântica
Neste ano, o prêmio foi dado ao pesquisador francês Serge Haroche e ao norte-americano David J. Wineland pela criação de “métodos experimentais que permitem medir e manipular sistemas quânticos individuais”. É mais um prêmio concedido ao desenvolvimento de um dos pilares da física: a física quântica.
Esse ramo da física começou a ser desenvolvido no início do século 20, quando novas descobertas começaram a mostrar que os conceitos da física clássica (a mecânica newtoniana, o eletromagnetismo e a termodinâmica) não conseguiam explicar alguns resultados experimentais observados.
Um exemplo foi a teoria proposta em 1899 pelo físico alemão Max Planck (1858-1947) para explicar o comportamento da radiação emitida por um corpo negro. Um corpo negro ideal é um corpo que absorve toda a radiação incidente sobre ele e, depois de aquecido, emite radiação com determinada característica. Se fossem utilizados o eletromagnetismo e a termodinâmica conhecidos na época para explicar esse comportamento, surgia uma discordância entre os conceitos teóricos e os resultados experimentais.
Planck então deduziu uma fórmula que descrevia os resultados experimentais. Para obtê-la, ele introduziu o conceito de que a energia em um corpo negro somente poderia ser absorvida na forma de valores discretos, em ‘pacotes’ – ou quanta, termo em latim que acabou batizando o ramo da física que nascia ali.
Partículas subatômicas
A mecânica quântica permitiu o estudo dos sistemas físicos em escala subatômica. (foto: Robert Couse-Baker/ Flickr – CC BY 2.0)
O físico propôs que a energia era resultado da multiplicação da frequência da radiação por uma determinada constante, que posteriormente foi batizada com seu nome (constante de Planck) e é igual a 6,62 x 10-34 J.s (onde J = joule, unidade de energia; s = segundo). Esse é considerado o marco do início da física quântica. Por essa descoberta e outras contribuições, Planck recebeu o Nobel de Física em 1918.

Novos conceitos

No século 20, ocorreram os principais desenvolvimentos no campo teórico da física quântica. A grande maioria dos prêmios Nobel de Física naquele século foi dada a avanços tanto na teoria como em experimentos e aplicações desse ramo da física.
A grande maioria dos prêmios Nobel de Física no século 20 foi dada a avanços na teoria e em experimentos e aplicações da física quântica
Um dos conceitos introduzidos pela física quântica que tiveram impacto profundo na nossa compreensão da natureza foi o princípio da incerteza (ou princípio da indeterminação), proposto pelo físico alemão Werner Heisenberg (1901-1976) em 1927. Esse princípio introduziu a ideia de que é impossível conhecer com absoluta certeza simultaneamente a posição e a quantidade de movimento de uma partícula.
Esse princípio também limita nossa percepção em relação ao tempo e à energia de uma partícula. Essa limitação não é tecnológica, mas sim uma imposição da natureza e faz parte da essência do mundo em escala atômica.
Heisenberg não apenas desenvolveu esse princípio, mas também uma nova teoria para explicar o comportamento dos entes atômicos que ficou conhecida como mecânica quântica matricial. Nessa teoria, as propriedades das partículas são descritas por matrizes e podem ser calculadas pela realização de operações entre essas matrizes. Por essas contribuições, ele foi laureado com o Nobel de Física em 1932.
No ano seguinte, a Fundação Nobel concedeu o prêmio para o físico austríaco Erwin Schrödinger (1887-1961) e o físico britânico Paul Dirac (1902-1984) por desenvolvimentos de novas versões da teoria quântica. Schrödinger formulou uma teoria ondulatória para explicar o comportamento dos entes quânticos e Dirac mostrou que tanto a teoria de Schödinger quanto a de Heisenberg eram equivalentes, ou seja, levavam aos mesmos resultados. Dirac também ampliou essas teorias, ao incorporar os conceitos da teoria da relatividade restrita de Einstein, e criou uma versão relativística da física quântica.

Física quântica aplicada

Descobridores de aplicações dos princípios da física quântica também receberam vários prêmios Nobel de Física. Um deles foi concedido em 1964 aos físicos russos Nicolay Basov (1922-2001) e Alexander Prokhorov (1916-2002), por seus trabalhos fundamentais que permitiram o desenvolvimento do laser (fonte de luz com comprimento de onda bem definido). As aplicações do laser são inúmeras, desde a utilização na leitura de CDs e DVDs até a realização de cirurgias e o tratamento de doenças.
Laser
Os físicos russos Nicolay Basov e Alexander Prokhorov receberam o Nobel de Física de 1964 por seus trabalhos que permitiram o desenvolvimento do ‘laser’. (foto: Wikimedia Commons/ Netweb01 – CC BY-SA 3.0)
No caso do prêmio Nobel de Física deste ano, os ganhadores, trabalhando de maneira independente, desenvolveram técnicas que permitiram isolar partículas e observar seu comportamento individual.
David J. Wineland desenvolveu uma armadilha para prender íons (átomos eletricamente carregados) em campos elétricos e conseguiu deixar essas partículas no seu nível mais baixo de energia, o que permitiu a observação de seus efeitos quânticos. Já o francês Serge Haroche aprisionou fótons dentro de uma pequena cavidade entre dois espelhos e conseguiu obter a reflexão de apenas um único fóton antes que ele fosse absorvido pelos próprios espelhos.
Ganhar o prêmio Nobel de Física é apenas para poucos pesquisadores e é um reconhecimento da importância da descoberta por eles realizada. Claro que muitas vezes se discute a relevância do feito e se o trabalho de outro pesquisador que também contribuiu para a descoberta foi desconsiderado. Mas o fato é que o cientista que ganha o prêmio Nobel deixa seu nome marcado na história.

CURIOSIDADE

O atrito é bom ou ruim?

Nem sempre a força de atrito nos atrapalha nas tarefas que temos que cumprir. Ao contrário, muitas vezes ela nos ajuda.
Por exemplo, quando andamos, estamos “empurrando” o chão para trás e este nos empurra para frente, permitindo que andemos. Imagine se caminhássemos sobre uma superfície de gelo, ou mesmo por um chão cheio de cera, teríamos problemas para nos deslocar, pois não haveria atrito.
Um automóvel anda para frente quando seus pneus “empurram” o chão para trás e este os empurra para frente. Quando um carro faz uma curva, isso ocorre porque existe atrito entre o pneu e o chão; se não houvesse esse atrito o carro sairia reto nas curvas.
Em várias indústrias, existem esteiras para transporte de material, desde grãos de trigo a limalha de ferro (esta última para ser jogada em fornos). Essas esteiras transportam o material porque existe atrito entre elas e o material. Se não houvesse, o material ficaria escorregando sem conseguir sair do lugar.
 

Tirinha


quinta-feira, 8 de novembro de 2012

Tirinha


CURIOSIDADE


Por que a água apaga o fogo?
Para que seja possível entender por que a água apaga fogo, é preciso conhecer as condições necessárias para a existência do fogo, que são basicamente o calor, o comburente (oxigênio) e o combustível. Ao retirarmos um desses três componentes do fogo, ele apaga!
Porém, eliminar o combustível (material que está sendo queimado) é muito difícil, e retirar o oxigênio do ar também. Então, resta apenas retirar o calor existente na reação.
Aí entra a água, que reduz a temperatura do local, retirando assim o calor existente na reação.
No entanto, a água não apaga todos os tipos de fogo.
O fogo pode ser classificado em 3 classes distintas, que dependem da origem do incêndio. Estas classes são: A, B e C.
O fogo A é o único que pode ser usado com água, pois esta vai reagir com o processo de resfriamento. Esse fogo normalmente é originado em materiais sólidos como madeira, tecido, papéis...
O fogo classe B é o originado em combustíveis, tipo óleo, gasolina, querosene, álcool, etc. Esse, deve ser extinto por abafamento, normalmente utilizando o pó químico ou espuma química.
O fogo classe C é o ocorrido em equipamentos elétricos. A água ou qualquer equipamento que possua água não pode ser usado enquanto existir energia, pois a água se torna condutora de eletricidade. Então, deve ser usado o pó químico.

quarta-feira, 7 de novembro de 2012

Energia Negativa


Na teoria, sabemos que a menor temperatura que se pode alcançar é o chamado "Zero Absoluto", aonde são cessados qualquer movimento das partículas, essa temperatura é precisamente -273,15 ºC. Mas, na prática, qualquer trocadilho a parte, o buraco é mais embaixo. Na prática, não se pode resfriar algo até essa temperatura porque na mecânica quântica, cada partícula tem uma energia mínima, chamada de  "energia do ponto zero", que você não pode transcender. Mas, essa é a parte que todo mundo sabe. A parte curiosa é que este mínimo de energia não se aplica apenas as partículas, mas para qualquer vácuo, cuja energia é chamada de "energia do vácuo."
E para mostrar que essa energia existe, envolve um experimento muito simples que leva duas placas de metal em um vácuo, colocá-los perto juntos, e eles serão atraídos um pelo outro. Isso se dá por causa da energia entre as placas, só sendo capaz de ressoar em certas freqüências, enquanto a energia do vácuo pode ressoar em praticamente qualquer freqüência. Isso se deve porque a energia fora das placas é maior do que a energia entre as placas, elas são empurradas uma para a outra.  E já que as placas ficam mais próximas, a força aumenta, e em torno de uma separação de 10 nm este efeito (o chamado Efeito Casimir) cria uma atmosfera de pressão entre eles.  E como entre as placas se reduzem a energia do vácuo entre elas abaixo do normal da energia do ponto zero, é dito que o espaço tem a energia negativa, que tem algumas propriedades incomuns.

Biografia do Dia


Robert Hooke
(1635 – 1703)
Cientista inglês, essencialmente mecânico e meteorologista nascido em Freshwater, na Isle of Wight, que formulou a teoria do movimento planetário e a primeira teoria sobre as propriedades elásticas da matéria. Filho de um humilde pastor protestante, iniciou-se como corista da Igreja de Cristo de Oxford e foi estudar em Oxford University (1653), onde começou como assistente de laboratório de Robert Boyle (1655), e posteriormente seu colaborador nos estudos sobre gases, mostrando-se ser um exímio experimentador e ter forte inclinação para a mecânica. Pioneiro nas hipóteses de que as tensões tangenciais são proporcionais às velocidades de deformação angular e de que as componentes normais são funções lineares das velocidades de deformação, seu primeiro invento foi o relógio portátil de corda (1657) e enunciou a lei da elasticidade ou lei de Hooke (1660), segundo a qual as deformações sofridas pelos corpos são, em princípio, diretamente proporcionais às forças que se aplicam sobre eles.
Sua habilidade com experimentos valeu-lhe a eleição como membro e nomeação como curador de experiências da Royal Society (1662). Foi, também, professor de geometria do Greshan College. Descreveu a estrutura celular da cortiça (1665) e publicou Micrographia, sobre suas descobertas em ótica e iniciando suas análises dos efeitos do prisma, esferas e lâminas, com a utilização do microscópio. Com o microscópio também deu importante contribuição ao estudo da estrutura das células, devendo-se a ele a origem deste termo. Data deste mesmo ano outra sua invenção: o barômetro. Pesquisador em elasticidade dos fluidos e estudioso de gravitação universal, adaptou projetos de moinhos de vento para esquematizar medidores de correntes de ar e de água.
Suas notas e sua teoria sobre as rotações planetárias foram muito importantes para as pesquisas astronômicas posteriores. Utilizando um telescópio refletor, chegou a descobrir estrelas e a deduzir a rotação do planeta Júpiter em torno de seu eixo. Enunciou uma lei sobre a força da gravidade que, aperfeiçoada poucos anos depois por Isaac Newton, tornou-se um dos conceitos elementares da física. Também desenvolveu outros estudos sobre termodinâmica e óptica e entre suas criações ainda são citadas tipos de higrômetros e um anemômetro, uma junta universal e um aperfeiçoamento efetivo da bomba de vácuo. Foi o sucessor de Oldenburg como secretário da Royal Society (1677-1682) e faleceu em Londres, Inglaterra.

terça-feira, 6 de novembro de 2012

Jogo Online

http://www.sofisica.com.br/jogos/popupJogo.php?jogo=afundaOuFlutua

Eletricidade: Acionamento de Motores Elétricos


Motor elétrico é uma máquina destinada a converter energia elétrica em energia mecânica. É o mais utilizado de todos os motores elétricos, pois combina a facilidade de transporte, economia, baixo custo, limpeza e simplicidade de comando. São máquinas de fácil construção e fácil adaptação com qualquer tipo de carga.
As máquinas que atualmente conhecemos não produzem energia, elas convertem outros tipos de energia em energia mecânica para que possam funcionar. Assim como já dizia Lavoisier: “Na natureza nada se perde, nada se cria, tudo se transforma”. Ou seja, nada pode ser criado do nada, apenas transformado de algo já existente. Um exemplo disso é o nosso querido e velho liquidificador. Ele converte a energia elétrica em energia mecânica para que possa processar os alimentos. Hoje, em face da grande necessidade de se poupar a camada de ozônio da emissão de gases poluentes, os motores elétricos estão sendo largamente utilizados em veículos automotores com o intuito de economizar energia e poupar o meio ambiente. Gases poluentes, como o dióxido de carbono que é liberado dos escapamentos de veículos automotores e das chaminés das fábricas, têm um grande poder de destruição na camada de ozônio.
O funcionamento dos motores elétricos está baseado nos princípios do eletromagnetismo, mediante os quais, condutores situados num campo magnético e atravessados por corrente elétrica, sofrem a ação de uma força mecânica, força essa chamada de torque.
Existem vários tipos de motores elétricos, dos quais os principais são os de corrente contínua e de corrente alternada. Os motores de corrente contínua são mais caros, pois é necessário um dispositivo que converte a corrente alternada em corrente contínua. Já os motores de corrente alternada são mais baratos e os mais utilizados, pois a energia elétrica é distribuída em forma de corrente alternada, reduzindo assim seu custo.
Corrente contínua: corrente na qual possui fluxo contínuo e ordenado de elétrons sempre na mesma direção.
Corrente alternada: é uma corrente cuja magnitude e direção varia ciclicamente. Ou seja, há variação de corrente elétrica, ao contrário da corrente contínua.
Acima está a figura de um esquema simplificado de um motor elétrico. Ele possui um imã que produz um campo de indução magnética, um cilindro onde estão os condutores e fios que são ligados a um gerador.

Biografia do Dia


Galileu Galilei
Nasceu em 15 de fevereiro de 1564. Na cidade de Pisa, Itália
Galileu foi um físico, matemático, astrônomo e filósofo italiano que teve um papel ímpar na revolução científica. Sua obra mais citada e uma das mais revolucionárias para a época na qual viveu é a proposição da teoria Heliocêntrica, que descreve um modelo de universo onde o Sol é o centro imóvel, e não a Terra como se acreditava na época.
Também foi responsável pelo desenvolvimento dos primeiros estudos consistentes do movimento uniformemente acelerado e do movimento do pêndulo. Enunciou a lei dos corpos e o princípio da inércia e o conceito de referencial inercial, idéias precursoras da mecânica newtoniana.
Galileu construiu um telescópio refrator significativamente melhorado em relação aos já existentes na época, tornando possível a observação das manchas solares (o que lhe custou a visão), das crateras na Lua, das fases de Vênus, das luas de Júpiter, dos anéis de Saturno e inúmeras estrelas da Via Láctea.
Famoso por desenvolver os próprios equipamentos de pesquisa, é atribuído a Galileu a criação de instrumentos como a balança hidrostática, um tipo de compasso geométrico que permitia medir ângulos e áreas, o termômetro de Galileu e o precursor do relógio de pêndulo.
Em 1614 estuda métodos para determinar o peso do ar, descobrindo que pesa pouco, mas não zero como se pensava até então.
Em 1616, a Inquisição (Tribunal do Santo Ofício) pronunciou-se sobre a Teoria Heliocêntrica declarando que a afirmação de que o Sol é o centro imóvel do Universo era herética e que a de que a Terra se move estava "teologicamente" errada. Ele foi convocado a Roma para expor os seus novos argumentos. Teve assim a oportunidade de defender as suas idéias perante o Tribunal do Santo Ofício, que decidiu não haver provas suficientes para concluir que a Terra se movia e que por isso estimulou Galileu a abandonar a defesa da teoria heliocêntrica. Tendo Galileu persistido em ir além com suas idéias foi então proibido de divulgá-las ou ensiná-las.
A condenação de Galileu foi uma tentativa de salvar o geocentrismo, chave da escolástica, a grande síntese entre a filosofia de Aristóteles (século IV a.C.) e a doutrina cristã que dominou o pensamento europeu durante a Baixa Idade Média (séculos XI a XIV). Seu processo permaneceu arquivado por longos 350 anos. Somente em 1983 o papa João Paulo II admitiu os erros da Igreja e o absolveu.
Morreu em 8 de janeiro de 1642. Na cidade de Florença, Itália.